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In the application of nonlinear approximation theory one is usually
constrained to the calculation of best approximations on certain finite
subsets of a given domain. Two basic questions immediately arise: (1) Does
a best approximation exist on such a finite set ? And (2) If best approximations
are calculated on a sequence of finite sets that ““fill out” the domain (in some
sense) then do the calculated approximations converge to a best approxima-
tion over the whole domain?

in the first section of this paper we study these two questions in the context
of nonlinear approximation of continuous functions on finite subsets of the
interval [—1. 1] in the least-squares sense. In the second section we consider
the rate of convergence of discrete approximations to continuous ones. The
results obtained will apply to many types of rational approximations, to
exponential approximation, and more generally to most of the so-called
I'-families of Hobby and Rice {1]. The setting for our analysis is as follows.
Let /e C[—1, 1], SC E¥ be open and let 4 : & — C[—-1, 1] be such that

The map (x. 1) — A(x)t) defines an analytic functien (of N - I variables)
onS « [—1. 1] (h

Note that (1) implies that A has continuous Fréchet derivatives of all crders
on S with respect to the uniform norm on C[—1, 1]. We now present the
following two .xamples to illustrate condition (1) above.

EXAMPLE 1. LetS == E¥N =={(ay....dx, N oo, M), A;e Edi=1,.., N}
and define 4:S8— C[—1, 1] by A(ay ..., dx 5 A ooy AGNE) 7 Ala, AND)
ae’’ Lo gee?'. Then clearly 4 is an analytic function of the a;'s,
As, and ¢, so (1) is satisfied.

ExampLe 2. Let S = {(ay .. dyy o Dy yeos b)) € B0V 1 byt 4 0
bt =0 for all te[—1, 1]} and define A(a,...., a, . by ...., b,)(1) = Ala, b)
1
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()= (a, - ayt e ML by b)) Again it s clear from
this formula that the map is analytic in the a;s, b,’s, and ¢ so that the ordinary
rational functions also satisfy (1).

Before proceeding, a word on notation might be helptul. If ¢ is a map
defined on the open set U of a normed linear space X with values in a normed
linear space Y and if x € U then ¢'7(x) will denote the jth Frechet derivative
of ¢ at x for j a positive integer. When it is necessary to evaluate this multi-
linear operator at some set of j values {/; ..., i;} we will use the notation
(W1 . ). Also for typographical clarity, when the inverse of the
derivative ¢'(x) is needed. we will sometimes use the notation ¢’ () rather
than the more cumbersome ¢'(x)y-'.

The problem then is to minimize the functional yix) J‘:i [ACx)r)
JOOFde - JA(x) - f. Alxy - f1over S. For each ge C[- 1. 1] the integral
1s approximated by a quadrature formula of the form Z‘;,’,O %j28(154) where
ajy and ¢, are fixed, j == 0..... M, and {r,,,) C[—1, 1]. The discrete problem
then is to minimize

Ay
YoondAC) - UaDP s TAN) — fLAW) -~ f

it

over S.
Our analysis will be carried out by studying the functions arising in the
following simple lemma.

Lemma 1. Assume the setiing above. Then a necessary condition that x be a
local minimum of Y(x) (i, (X)) Is that

Fi(xy [A(,\') - %\4 (.\')] = 0

(Fax) [A(x) 1o (.wj U S R Y

Proof. Since A(x) is Fréchet differentiable on S, #(x) is clearly differen-
tiable and so at a local minimum x, ¢y/dx(x) = 0,7 = 1,..., N (the same is
clearly true of i,,(x)) and calculating we have d/ix,(x) = 2[A(x) — f,
CAJex(x)] and ésy,/ex,(x) = 2[A(x) — £ cAlex ()] -

Let U be a bounded open convex subset of EV and define X as {o: U -~
EN | &'(x) exists and is continuous on U'. Then X is a real linear vector space
and becomes a normed linear space if we define Ny(o) = sup,.g !l o(x)] -
sup,.g i o’(x) .where | - 1 is some vector norm on EV and the derivative norm
is the induced operator norm. The basic existence result of this paper is
based on the following fundamental lemma.
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LEMMA 2. Let Fye X be such thar Fy(x,) = 0 and F)'(x,) is nonsingular
where x,€ U. Then there is a ball B about x, in U and a & > 0 such that if
Ny(F — Fy) <0 then there is a unigue x(F) e B such that F(x( F)) = 0. In fact,
the map F -»> x(F) is Fréchet differentiable.

Proof. Define Q: X ~ U— EN by (0. x) = a(x). Then (&ico(o. x)
exists and is given by the relationship ¢Q/¢o(a, X)(7) =~ 7(x) for each € X.
(Here, of course. 202/¢o means the Fréchet derivative of 4 with respect to o.)
Also, ¢Qj¢x (0. x) - o'(x) for each xe U and o¢ X. Thus. Q2(F,.x,) = 0
and Qex (Fy, x,) 1s nonsingular by hypothesis Also the map (F, x) —>
c2/cx (F, x) = F'(x) is continuous on X - U since if Ny(F, — F)-  x, —
x° — Othen

N)| = 1F v F

K.

Thus, the implicit function theorem [2, p. 230] applies and so there exists
a ball B, about F, (of radius 8, say) and a ball B; about x, in U and a differen-
tiable map x : By — By such that x(Fy) - x, and for each F e B, we have
F(x(F)) = 0. Moreover, X'(F, 1) == —(e£2/¢x)"V (F. x(tF)W e[ colF, x(F)(r)) =

F Ax(F)(r(x(F))). In particular, x(F)(7) = —F {(x,0(7(x,)) for edch
Te X |

Remark 1. Tt is simple to show that the mapping £ of Lemma | is in
fact continuously djfferentiable so that the map F — x(F) also has this
property. Sce also Lemma 3 of Section 2.

In order to apply Lemma 2 to the discrete approximation problem we
make one further mild assumption about the quadrature formulas employed.
This condition is satisfied by all the standard methods for numerical integra-
tion (see [5, p. 343)).

ASSUMPTION. For each ge C[- 1. 1] the quadrature formulas are such
that

1
l" gty dr — Z a8t 7\/)! S CW(g. 4y))

Jo B

where C is some constant independent of g, d,; = maXg oy o9y —
1. »and W(g. -) is the modulus of continuity of g.
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THeOREM . Suppose x4, S is such that the map
,

Fo) (A - 1. ;f—’; (9o [4C0) 1, A )])

CX N

satisfies Folxy) == 0 and such that Fy(x,) is nonsingular. Also assume
that 4,; >0 as M — oo. Then there is a ball B about x, and an M, such that
Jorall M - M, there exists q unique x,, € B such that Fy(x,,) = 0. Moreover.
Xyr > Xy as M — oo.

Proof. Using Lemma 2 it is sutficient to show that N (fy, — F)->0 as

can be chosen as an open ball centered at x, . Now

ii — )] - [ﬁ (x), %ﬂ ]}

Fo o (|4 — 1.~

RN ax;
and
., Y| oA A
I e I ksl AU R
] i N.

To show N(F,, - F,) — 0, it is clearly sufhicient to show that

sup max HA(.\‘) — /. JA (,\‘)J [A(.\') — /. ’i, (x)] Mi -0 (")

B ox; cx;
and ‘ A
strlf_) ma,x "[A(,\') 7. r\l;}/J [A(.\‘) 7. é’.\{‘,-tél.\:,f (,\‘)jM
[l [ ]
as M - x (")
But,
- 5 ][4 s (:’ )] N

%

N

cw (‘(/4(»\') 7) (RN ’—/]‘\1)

‘A R
CW (ALY {\ (L Ay) WS ;\,_,f(,\-),d‘\,)

Ay A

T g ed .

C Ay, W= 0. 4y) 0 WA, dy)
o4 ped o
foWlgy oAt Ay

¢, dy C.W(f A,
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where C; and C, are independent of / and x for x € U. In obtaining the last
inequality we have used assumption (1) to obtain uniform Lipschitz constants
independent of x € U for A(x) and 64/éx; (x), i = 1,..., N. Thus (*) — 0 and
M — oo, Proceeding in a similar way (using assumption (1)) we find also that
there are constants C, and C, independent of i, j and x € U such that

[0 12 o] + [ o i)

Jaw —f e @] - [ o)

CxX; OX; ax; \ [

= C3AA\! - C4 W(f, AM)

foralli << I,j << N. Since 4,, — 0 as M — o0, we conclude N,(F — F,;) — 0
and so by Lemma 2 the conclusion of the theorem is valid. ||

COROLLARY 1. Assume the hypotheses of Theorem 1 hold and in addition
that Fy(x,) is positive definite and that A= exists and is continuous on a
relative neighborhood of A(xy). Then A(x,) is a local best approximation to f
and each A(x,) (for M sufficiently large) is a local best discrete approximation

tof.

Proof. Clearly x, is a local minimum of the functional f{(x) — [A(x) — /.
A(x) — f] and the continuity of A=1 at A(x,) implies that A(x,) is a local
best approximation to f. From the convergence of x,, to x, and F\; to £, in the
norm topology of X we have that F,/(x,,) 1s positive definite for M suffi-
ciently large that x,, is a local minimum of ,(x) — [A(x) - /. A(x) - [y
the continuity of 47! on a neighborhood of A(x,) yields the desired conclu-
sion. |

Remark 2. In special cases, such as ordinary rational approximation {3]
or certain types of I" families [4], it is easy to show that if A(x,) is a unique
(global) best approximation for the continuous problem, then for M suffi-
ciently large. A(x,,) is in fact a (global) best discrete approximation. For
example. in the rational function case, a discrete best approximation exists
for M sufficiently large and the sequence of these best approximants converge
uniformly to the unique continuous best approximation A(x,) [3]. Since
these discrete best approximations satisfy the equations of Lemma 1. we
imply from the uniqueness part of Theorem 1 that for M sufficiently large
Alx,,) is a (global) discrete best approximation to f.

CONVERGENCE OF BEST APPROXIMATIONS

[t seems reasonable that the accuracy of the quadrature formulas used to
approximate the integral should affect the rate at which the parameters of
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the discrete approximations converge to the best approximation parameters
for the continuous problem. In this section we shall demonstrate that this is
indeed true provided that the function approximated is sufficiently smooth.
To simplify the analysis we shall assume that the data points #;y,,j -= 0.... M
are all equally spaced.

Suppose x, € §is such that Fy(x,) - 0 and F,'(x,) is invertible and let U be
an open ball centered at x,. Forj 1.2 let X, -{o: U —EY o'(x)
exists and is continuous on U} and define a norm N, on X, by

]

N () Y sup ot(x).

feo et

LEMMA 3. The map $XF, x) = F(x) defined on X; - U — EN is | times
continuously differentiable.

Proof. Since the Fréchet dertvative £2V(F, x) will be a jth-order multi-
linear operator on X, < E¥ into E™ it is sufficient to describe it by its action
onan arbitrary j-tuple of points in X, = EV say ((v; . Iyh {7 . Bodons (75, 1)),
One finds by a direct and simple calculation that the directional derivative
(which we do not distinguish notationally from the Fréchet derivative) exists
in the given direction and is given by the formula

QUUF, X1y e (7, 1)

: F(’f)(,\')(h1 T I Tl('f'l)(.\‘)(le ..... hyy - ri l)(A\')(/ll . iz._, ..... ;)

Ti’l 1)(.\_)(/1] v 1),

where /1, denotes that the /th term is to be omitted. From this formula and
the fact that F, =, ... 7; have continuous jth-order Fréchet derivatives on U.
it follows easily that 2(F. x) has j Fréchet derivatives on X; » U and that if
N{F, — Fy-- [ X, — X! ->0, then 1 QU(F,. X}~ QUF x)—0. |

The next corollary is an immediate consequence of the above and the
implicit function theorem.

COROLLARY 2. The map x(°) (the existence of which is guaranteed by
Theorem 1) defined implicitly by SXF, x) = 0 is | times continuously differen-
tiable on its domain of definition.

Let i 2:M and I,(g) Z‘,\iu a;ye(t;y) and assume that ji] gix)dy
I(g) - Ch*if ge CP[- 1, 1], where C, is of the form «g'P(§) for some
Ec(—1.1). Also assume that therc is an m I such that if g= C#?
[-~1.1]. then the above error is of the form C,'#" - O(/" 7y where ¢, is
independent of /1.
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ExampLE.  Consider the Comp051te trapezoid rule given by [(g) ==
2D)[g()) + g(—D} + A ZPI g(tiar). Then it is well known [5] that P = 2
and that if g e C®[—1, 1] then

o) e g g, g at

[ sty — ) = A e S
where --1 <Zn < 1. Thus, in this case, Gy = (g (— 1)y — g'(IN12, m = 2.
and the term g®(n) #1360 is clearly of the form O(*) == O(h": *).

LEMMA 4. For each x € S, Fy(x) -~ Fy(x) — K, — O(F="), if fe Coe-P)
[- 1, 1] where K, € EN is independent of h, m and P are as above, and O(h*+")
denotes a vector in EN such that || O(h"* )| [k < C << o0 for all h sufficiently
small and positive. (Here | - | is an arbitrary norm on EN.)

Proof. (Fy(x) — Fu(x)); == [A(x) - f, ¢Ajexx)] — [A(x) — f, ¢A]ex;
(X}, 1 i <0 N, and by assumption each such component of Fy(x) — F,(x)
is of the form k4% - O(h""*F) where k; is a real constant independent of £
for i:=1,2,., N. Thus, Fy(x) = F(x) = K, - O(h"**"), where K, =
(Kq oo k)T is independent of /1.

LEmMmA 5. Assume fe CP—1, 1] and let ¢ be an arbitrary nonnegative
integer. Then as h — 0 F;, — F in the topology of X, and in fact N(F, — F) ==
O(ht).

Proof. The proof follows from the observation that for any j and any
nonnegative integers /, ...., iy we have that

o’ &LA
il )v) 0
1 N
is uniformly bounded on U = [—I, |] by assumption |, where L = i -+

- +4-iy . Then, for example, in bounding sup,.g|' F,/(x) — F,’(x)il we must
bound the entries of the matrix

Ly = {[Aeo — 1. "2‘4‘;" ] - [’;\i (.2 ]

where | <1, j < N. Butsince f'e C[--], 1], it is evident that the magnitude
of each entry of L(h) has an upper bound of the form C;Ai* where C;; is
independent of / since the respective Pth derivatives (with respect to ) are
uniformly bounded on U - [ 1. 1]. Proceeding in the same way with the
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other derivatives (the elementary but lengthy details we will not record here)
the bound N,(F, — F) = O(i") is obtained. |

We now have the following theorem which is the main result of this
section.

THEOREM 2. Let h - 2/M and let the quadrature rule [,(g) i
¥;,8(t;.) and the positive integers m and P be as before. Assume fc CO P
{1, 1]. Then for all h sufficiently small, x(F,) x(F,) - hPC, i O(h*)

where Cy is an element of EN that is independent of hand L -~ min(2P, m - P).

Proof. Let g == 2 be arbitrary. By Lemma 5, F), — F, in the topology of
X, and by Corollary 2, x(*) is ¢ times continuously differentiable on some ball
in X, centered at £, . Thus in particular, x(F,) = x(Fy) — xX'(F)F, — F,) -
O(NJF, — F)?) = x(Fy) + FLO)FuX) — Folxg) — ONJSE, — Fo)P)
(where F21(x5) — (F(x)))™) = x(Fy) + FLUX)(KAT + Oth™ D)) + O(h#r) -
x(Fp) — WPF(x) Ky — Fi(x,) OBy -1 O(hF) -- x(Fy) -+ h*Cy + O(H-)
where C,  F'(x,) K. Note also that in the above O{(/™ 7) and O(h%) are
vectors in £V,

Remark 3. The standard way of discretizing the continuous problem is to
minimize Zfio [A(X)t;0) — F(ta) P (1/2M), where the t,,,s are equally
spaced. This, however, corresponds to a quadrature formula of the type
above with p - [ (actually it is the so-called rectangle rule with one end
peoint added), while if one uses the composite trapezoid rule, say, then p - 2.
In addition. other standard methods could be employed such as Simpson’s
rule, still higher-order Newton—Cotes formulas, or Romberg integration.
Theorem 2 shows that in such cases Richardson extrapolation could be used
to accelerate the convergence of the discrete problem coefficients to the
coefficients of the solution to the continuous problem,

Another obvious discretization method that could be used would be the
Gaussian quadrature rules. Here the data would not be equally spaced, in
general, but the high precision of such formulas should make them especially
useful. Clearly. a considerable amount of testing is needed to determine the
extent to which the results obtained herc can be used to lessen the work
needed to solve practical problems. We hope to report elsewhere on the results
of such experiments.

Remark 4. In the last section of this paper we have frequently assumed
that the linear map F’'(x) was positive definite at the local best approximation
being considered. If this condition is dropped, then existence of discrete best
approximations can still be proved for sufficiently dense discrete subsets (in
the /, case, say) for such families as the ordinary rational functions and the
exponential family [3, 4]. Also, the convergence can be shown to be uniform
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over the entire interval if the best approximation is unique. However, no
information about rate of convergence is obtained once the nonsingularity
hypothesis on F'(x} is dropped.
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