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]n the application of nonlinear approximation theory one is usually
constrained to the calculation of best approximations on certain finite
subsets of a given domain. Two basic questions immediately arise: (l) Does
a best approximation exist on such a finite set? And (2) If best approximations
are calculated on a sequence of finite sets that "fill ouf' the domain (in some
sense) then do the calculated approximations converge to a best approxima­
tion over the whole domain?

In the first section of this paper we study these two questions in the context
of nonlinear approximation of continuous functions on finite subsets of the
interval [-I, I] in the least-squares sense. ]n the second section we consider
the rate of convergence of discrete approximations to continuous ones. The
results obtained will apply to many types of rational approximations, to
exponential approximation, and more generally to most of the so-called
r-f~lmilies of Hobby and Rice [I]. The setting for our analysis is as follows.
Letfc=C[-I, 1],SCENbeopenandletA :S--C[--l, I] be such that

The Illap (x, t) -+ A(x)(t) defines an analytic function (of N -! I variables)
on S [-1, I]. (I)

Note that (I) implies that A has continuous Frechct derivatives of all orders
on S with respect to the uniform norm on C[-I, I]. We now present the
following two ."xamples to illustrate condition (I) above.

EXMIPLE ]. Let S C~ pN c:c {Cal ,... , aN, A1 , ... , AN) a" Ai c= E i·~ 1, ... , N]
and define A : S --+ C[-I, 1] by A(al ,... , aN , AI ,... , '\N)(t) A(a, A)(t)
a1c" 11 ! •.. + a,,_cANt • Then clearly A is an analytic function of the ai's,
,\,s, and t, so (I) is satisfied.

[XA~lPLE 2. Let S =:-= {(ao ,... , an , b1 , .. " hlfl) c Em n·C
·l I -1-- bit -i- ... -+--

b",t' li 0 for all t c= [- ], ]]} and define A(ao ,... , all , hI"'" hm)(t) A(a, h)
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(I) (all all anl")!( I hJI h",I"'). Again it is clear from
this formula that the map is analytic in the a/'s, hi's, and t so that the ordinary
rational functions also satisfy ( I).

Before proceeding, a word on notation might be helpful. If ep is a map
defined on the open set U of a normcd linear space X with values in a normed
linear space Y and if x E U then ep(iJlx) will denote thejth Frechet derivative
of ep at x forj a positive integer. \Vhen it is necessary to evaluate this multi­
linear operator at some set of j values {hI p." hi} we will use the notation
epi(x)(h j •••• , hi). Aiso for typographical clarity, \vhen the inverse of the
derivative ep'tx) is needed. we will sometimes use the notation ep' I(X) rather
than the more cumbersome ep'(x) .1.

The problem then is to minimize the functional l/f(X) t I [A(X)(I)

f(t)J2 dt [A(x) I A(x) f] over 5'. For each g C[ I. I] the integral
is approximated by a quadrature formula of the form L~:t() ,X/Mg(t).II) where
XiII and tiM are fixed.j cO..... lVI, and ;t,,; C [ I, I]. The discrete problem
then is to minimize

,\1

L 'i,,[A(x)(ti.I/)
II

[A(.\) -- I, A(x)

over S.
Our analysis will be carried out by studying the functions arising in the

following simple lemma.

LEMMA I. Assume the seffing aboce. Theil a lIecessarv cOlldition that x he a
local minimum of ~J(x)t~f."lx) is thai

l-~(y)

[AIX)

. (/I ]t, --;- .... (yl
. ex,

?A .
I (XlJ

,'1

°
0), i, ... ,N.

Proof Since A(x) is Frechet differentiable on S, .pIX) is clearly differen­
tiable and so at a local minimum x, (:~Ij (iX/IX) == 0, i 1, ... , N (the same is
clearly true of Villlx») and calculating we have (J.pjDx,Ix) 2[A(x)- /;
cA/ex,lx)] and (~fll!(x/lx) 2[A(x) -- t: iA/ax,(x)].\[. I

Let U be a bounded open convex subset of EN and define X as {a : U ,.
EN ! a'(x) exists and is continuous on Dj. Then X is a real linear vector space
and becomes a normed linear space if we define Njla) SUPXEU u(x)'!
sUPo,cu a'lx)!, where!' is some vector norm on EN and the derivative norm
is the induced operator norm. Thc basic existence result of this paper is
based on the following fundamental lemma.
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LEMMA 2. Let}~ E X be such that Fo(xo) 0 and }~/(xo) is nonsingular
where X o E U. Then there is a ball B about Xo in U and abO slich that if
Nj(F - Fo) < b then there is a unique x(F) E B such that F(x(F)) ~ O.lllfact,
the map F -- ~ x(F) is Frechet (hfferelltiable.

Proof Define Q: X U ---+ EN by D(a, x) a(x). Then iQ:iu(a. x)

exists and is given by the relationship iQ/(u(a, X)(T) T(X) for each TEX.

(Here. of course. i'Q/ ('U means the Frechet derivative of ~J with respect to a.)

Also, iQ/ix (a. x) a'(x) for each x E U and a EX. Thus. D(Fo . xo) 0
and cQ/ex (Fo , x o) is nonsingular by hypothesis. Also the map (F. x)-~

iQ/ex (F, x) F(x) is continuous on X U since if Nj(F,- F) x,

x-' 0 then

if] _ EQ IT\ (fv, xv) - (lx (F. x) =~ F,'(x,) - F(x)

i F,'(x,) r(Y,): F'(x,)

F) F'(.Y,) - F(y), -+ 0

as l' - , x.

Thus, the implicit function theorem [2, p. 230] applies and so there exists
a ball Bo about l'o (of radius b, say) and a ball Bj about X o in U and a dilTeren­
tiable map x : Bo --+ Bj such that x( Fo) X o and for each FEB] we have
F(x(l')) = O. Moreover, x'(F, T)= --(iD/ex)' 1 (l', x(F))(?~J/?a(F,X(F))(T)) =

F~j(x(F))(T(x(l'))). In particular. x'(l'o)(T) = -F~l(XO)(T(xo)) for each
TEX. I

Remark 1. It is simple to show that the mapping Q of Lemma 1 is in
fact continuously djfferentiable so that the map F -->- x( F) also has this
property. See also Lemma 3 of Section 2.

I n order to apply Lemma 2 to the discrete approximation problem we
make one further mild assumption about the quadrature formulas employed.
This condition is satisfied by all the standard methods for numerical integra­
tion (see [5, p. 343]).

ASSUMPTION. For each g E C[ - 1. 1] the quadrature formulas are such
that

llf ,

I r g(t) dt -- I (XjIL~(ti\f)1
~ ---l j, U ;

CW(g, ,dlf)

where C is some constant independent of g . .1.lf = maxI}" If-J f", If--

t,lf ,and W(g, .) is the modulus of continuity of g.
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THEOREM I. Suppose X o t= S is such that the map

f;)(x) ([A(x) bA ] [f.:--.-- (x) ,.... A(x)
c.Y1

(:A ] T

J. '.. (x) ..)
CXN

satisfies f~(xo) ~= 0 and such that f~'(xo) is nonsingular. Also assume
that J.II ~ 0 as M --+ 00. Then there is a ball B about Xo and an Mo such that
for all M Mo there exists a unique XAI t= B such that F,I/(X.ltl-= O. Moreover,
Xcii >- X o as lv! ->- 00.

Proof Using Lemma 2 it is sufficient to show that Nl(F~1 -- F) ->- 0 as
M+ 00, where in this case the set U used to define the space X of Lemma 2
can be chosen as an open ball centered at X o . Now

and

rex) [
cA iA
Bx" (X)"h-~(x)])

, J

I i. j N

, 4 iA
[ --~(\).. c'X.i ('Xi

I i. j

(.Y)] )
M

N.

To show N\(F'I f;)) ->- O. it is clearly sufficient to show that

[~'1, (x),

and

But.

I
[

. i A JsuI? max A(x) -- I -;--; (x)
I"!::' l' i r~\ i

[
i'A ] i

A(x)-(~-- (x) I ·0
ex, ,II

r"A J
!. ('Xi ix, (x) ,II

iA ] I '-~-- (x) -. ()
r _\ , .11 I

as .H· y_.

( *)

( ')

. iA ]/., (\)
('Xi

[ 04(,\) (x)]
\{

, i A .• \t) " _ (.r). il lli
( .\ i

(
iA . . LI '

CW 04(\) --;-- (x). '1/'
('Xi

( '. I '11/ (' i /1 ,1 \\ A(x). rr -:---:- (x), LJ 1/1
c,\ i

. (1
I W( . (x),Ll M )

,
Cc IV(r: j \I)'
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where C1 and Cz are independent of i and x for x E U. In obtaining the last
inequality we have used assumption (1) to obtain uniform Lipschitz constants
independent of x E U for A(x) and oA/()xi (x), i = 1, ... , N. Thus (*) -+ 0 and
M ->- 00. Proceeding in a similar way (using assumption (1») we find also that
there are constants C3 and C~ independent of i, j and x E U such that

for all i .S; l,j S; N. Since Ll M -+ 0 as M -+ 00, we conclude N1(F -- FM ) -+ 0
and so by Lemma 2 the conclusion of the theorem is valid. I

COROLLARY I. Assume the hypotheses of Theorem 1 hold and in addition
that Fo'(xo) is positive definite and that A-I exists and is continuous on a
relative neighborhood of A(xo). Then A(xo) is a local best approximation to f
and each A(xM ) (for M sufficiently large) is a local best discrete approximation
tof.

Proof Clearly Xu is a local minimum of the functional1j;(x)- [A(x) -I:
A(x)-- f] and the continuity of A-I at A(xo) implies that A(xu) is a local
best approximation tof From the convergence of X\I to Xo and FM to Fo in the
norm topology of X we have that F,\/(xM) is positive definite for /'14 suffi­
ciently large that X M is a local minimum of ~JM(X) [A(x) I: A(x) fl\l ;
the continuity of A-Ion a neighborhood of A(xo) yields the desired conclu­
sion. I

Remark 2. fn special cases, such as ordinary rational approximation [3]
or certain types of r families [4], it is easy to show that if A(xo) is a unique
(global) best approximation for the continuous problem. then for M suffi­
ciently large. A(x,\I) is in fact a (global) best discrete approximation. For
example. in the rational function case, a discrete best approximation exists
for M sufficiently large and the sequence of these best approximants converge
uniformly to the unique continuous best approximation A(xo) [3]. Since
these discrete best approximations satisfy the equations of Lemma I. we
imply from the uniqueness part of Theorem 1 that for /''11 sufficiently large
A(.Y\I) is a (global) discrete best approximation to f

CONVERGENCE OF BEST ApPROXI'-'fATIONS

It seems reasonable that the accuracy of the quadrature formulas used to
approximate the integral should affect the rate at which the parameters of
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D -~ EN is j times

the discrete approximations converge to the best approximation parameters
for the continuous problem. In this section we shall demonstrate that this is
indeed true provided that the function approximated is sufficiently smooth.
To simplify the analysis we shall assume that the data points li.\[,j 0.... M
are all equally spaced.

Suppose X o E S is such that Fo(xo) 0 and f;,'(xo) is invertible and let U be
an open ball centered at Xo ' For j 1.2.... let X, 1fT: U -~ EV alil(x)

exists and is continuous on UJ and define a norm N i on X, b)

N i (,,) L sue ,,(!)(:\).
10 l:

LEMMA 3. The map Q(f~ x) F(x) defined on X:
conlinuously differentiahle.

Proal Since the Frechet derivative QU)(F, x) will be a jth-order multi­
linear operator on Xi EN into EN. it is suft1cient to describe it by its action

on an arbitraryj-tuple of points in Xi eY, say ((71' h1 ). (T2' h2), ...• (Ti' hi)'

One fi.nds by a direct and simple calculation that the directional derivative
(which we do not distinguish notationally from the Frechet derivative) exists
in the given direction and is given by the formula

Q())(F.r)((TI • hI) (T,. 17;))

F(j)(x)(h1 hi) . i T;1 l)(x)(il j ..... h})

where ill denotes that the /th term is to be omitted. From this formula and
the fact that F. T) ..... Ti have continuousjth-order Frechet derivatives on D.
it follows easily that Q(F. x) has j Frechet derivatives on Xi D and that if
N;(F, - F) i X, - X! -:> O. then QUI(F, . X,) Q())(F, xX -~ O. I

The next corollary is an immediate consequence of the above and the
implicit function theorem.

COROLLARY 2. The map x(') (the existence 0/ It'hich is guaranteed hr
Theorem I) defined implicitly hr Q(F. x) 0 is j times continuouslr differen-
tiable on its domain 0/ definition.

Let h 2i'v! and l,,(g) L;~o ai.\lg(ti\l) and assume that J~l g(x) dx
l,,(g) C1//' if g E C(f'I[. I. I], where C 1 is of the form ,,,g(P)(~) for some
~ E (-I. I). Also assume that there is an IJ1 I such that if g Cln. I')

[ I. I]. then the above error is of the form C)'h? O(h'" P) where C' is
independent of h.
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EXAMPLE. Consider the composite trapezoid rule given by l,,(g)

(h/2)[g(l)+- g( -1)] + h I:~l g(ti\l)' Then it is well known [5] that P~~ 2
and that if g E C(4)[-I. I] then

.1I g(x) dx -- l,,( g)
'I

[g'( 1)- g'(I)],.... -- -------- h-
12

where 1<7) < I. Thus. in this case. Cl ' .'(g'(-I) -g'(I»),12. III 2.
and the term gI4J(7)) h4 /360 is clearly of the form 0(h4) O(h"' 1').

LEMMA 4. For each XES. Fo(x) Fh(x) hPK1 -- 0(111'· '''). ifjE CIII' 1'1

[- I. I] where K] E EN is independent ofh. m and P are as above. and O(hp ill')

denotes a vector in EN such that Ii O(h lll l')l/h"'i I' C < 'Xl for all h sufficiently
small and positive. (Here . is an arbitrary norm on EN.)

Proof: (Fo(x) - f~,(x»; [A(x) j; ?A/Ex,(x)] - [A (x) - f ('A/ex,
(X)lH ,I i N. and by assumption each such component of f~(x) - F1Jx)
is of the form k ;hP -- O(hlllep

) where k i is a real constant independent of h
for i 1, 2•.... N. Thus. Fo(x)-~ Fh(x) = hI' K] O(h"'-1I'). where K] ~.'

(k] "', k"Y is independent of h. I

LEMMA 5. Assume fECII') [-I. I] and let q be an arbitrary nonnegative
integer. Then as h~ 0 Fh -+ F in the topology of' X qand in fact Nq(Fh - F) ===
O(hl').

Prool The proof follows from the observation that for any j and any
nonnegative integers i1 ..... i,,- we have that

di [;LA )
_., (,-..-,-_.-~-.. - (x). (t)
dt' ('X'I'" ('X'N '

] N

is uniformly bounded on D [-I, I] by assumption I, where L i]
... " i,- . Then. for example, in bounding SUPXEO Fo'(x) - Fh'(x)!! we must
bound the entries of the matrix

. 2A
Uh) = ([A(x) -- /; -~.-:- (X)]

(.\ i (.\ i
[_t A (x),-~~ (.y)]

C.X; (.X i

- [A(x) - f -7-~1-:- (x)] - [ teA. (X), -{~ . (X)] ).
C\; C\i M ex; (.'.; ,H'

where 1 i. .i N. But since/ E CII'I[- J. IJ. it is evident that the magnitude
of each entry of L(h) has an upper bound of the form C'ihP where CiJ is
independent of h since the respective Pth derivatives (with respect to t) are
uniformly bounded on D [ I. I]. Proceeding in the same way with the
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other derivatives (the elementary but lengthy details we will not record here)
the bound N,lF" - F) = O(hP ) is obtained. I

We now have the following theorem which IS the main result of this
section.

THEORHI 2. Let h 2: M and let the quadrature rule II.(g) Ij\~o

'j.\/g( tj\l) and the positire integers m and P be as before. Assume f E c(m. P)
[ I, I]. Then for all h sufficiently small, x(Fh) x(Fo) hPC1 I O(hL )

where C1 is an element ofEN that is independent ofhand L min(2P, m Pl.

Proof Let q 2 be arbitrary. By Lemma 5, F" ---+ Fo in the topology of
X q and by Corollary 2, x(·) is q times continuously differentiable on some ball
in X q centered at F;) . Thus in particular, x(Fh) x(Fo) --;- x'(F;))(Fh - Fu)

O(Nq(F" - FO)2) x(Fo),- F~l(XO)(Fh(XU) - Fo(xo)) _L O(Nq(Fh - Fo)~)

(whereF~l(xo) (F01(XU})-1) x(Fo) F~l(Xu)(KlhP T O(h 'IlP)) + O(h2P)
x(}~,) -"- hPF~l(XO) K1 - F~l(XO) O(!I'IIPJi 0(h2P)-- x(Fo) hPCj --t O(hL )

where C F:1(xn) K1 . Note also that in the above O(h m PJ and O(hL) are
vectors in EN.

Remark 3. The standard way of discretizing the continuous problem is to
minimize L:\~o [A(x)(tj'\/) - f(tj.\f)]2 (I j2M), where the tjM's are equally
spaced. This, however, corresponds to a quadrature formula of the type
above with II I (actually it is the so-called rectangle rule with one end
point added), while if one uses the composite trapezoid rule, say, then p 2.
In addition, other standard methods could be employed such as Simpson's
rule, still higher-order Newton-Cotes formulas, or Romberg integration.
Theorem 2 shows that in such cases Richardson extrapolation could be used
to accelerate the convergence of the discrete problem coefficients to the
coefficients of the solution to the continuous problem.

Another obvious discretization method that could be used would be the
Gaussian quadrature rules. Here the data would not be equally spaced, in
general. but the high precision of such formulas should make them especially
useful. Clearly, a considerable amount of testing is needed to determine the
extent to which the results obtained here can be used to lessen the work
needed to solve practical problems. We hope to report elsewhere on the results
of such experiments.

Remark 4. In the last section of this paper we have frequently assumed
that the linear map F(x) was positive definite at the local best approximation
being considered. Tf this condition is dropped, then existence of discrete best
approximations can still be proved for sufficiently dense discrete subsets (in
the (~ case. say) for such families as the ordinary rational functions and the
exponential family [3,4]. Also. the convergence can be shown to be uniform
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over the entire interval if the best approximation is unique. However, no
information about rate of convergence is obtained once the nonsingularity
hypothesis on F'(x) is dropped.
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